Passage 1
FACIAL RECOGNITION
题目类型
|
T/F/NG
Matching
Multiple Choices
|
参考答案
|
段落搭配
A. 定义人身份的特征,包括脸部特征,衣着等
B. 脸部特征经常用照片来进行研究,实际上是不科学的,原因是三维和二维不同
C. 为什么会发生认错人的情况
D. 在犯罪中证人指示罪犯往往忽略脸部特征,而这个特征十分重要。
E. 研究是不是长的漂亮或impression的人的脸容易被记住,答案是不确定,因为有些研究支持,有些反对。
F. 关于脸部整体特征和个别器官之间的关系,很复杂,不过没有在这个上面出题目
G. 关于个别器官的重要性
H. 研究的不足之处—包括没有实用性,没有说明如何记住人脸
题目答案上面都包括了
|
来自internet相关背景文章
Traditional
Some facial recognition
algorithms identify faces by extracting landmarks, or features, from an image of the subject's face. For example, an algorithm may analyze the relative position, size, and/or shape of the eyes, nose, cheekbones, and jaw. These features are then used to search for other images with matching features.
[2]Other algorithms normalize a gallery of face images and then compress the face data, only saving the data in the image that is useful for face detection. A probe image is then compared with the face data. One of the earliest successful systems is based on template matching techniques applied to a set of salient facial features, providing a sort of compressed face representation.
Recognition algorithms can be divided into two main approaches, geometric, which looks at distinguishing features, or photometric, which is a statistical approach that distill an image into values and comparing the values with templates to eliminate variances.
Three Dimensional recognition
A newly emerging trend, claimed to achieve improved accuracies, is
three-dimensional face recognition. This technique uses 3D sensors to capture information about the shape of a face. This information is then used to identify distinctive features on the surface of a face, such as the contour of the eye sockets, nose, and chin.
One advantage of 3D facial recognition is that it is not affected by changes in lighting like other techniques. It can also identify a face from a range of viewing angles, including a profile view. Three-dimensional data points from a face vastly improve the precision of facial recognition. 3D research is enhanced by the development of sophisticated sensors that do a better job of capturing 3D face imagery. The sensors work by projecting structured light onto the face. Up to a dozen or more of these image sensors can be placed on the same CMOS chip -- each sensor captures a different part of the spectrum..
Even a perfect 3D matching technique could be sensitive to expressions. For that goal a group at the
Technion applied tools from
metric geometry to treat expressions as
isometries. A company called Vision Access created a firm solution for 3D facial recognition. The company was later acquired by the biometric access company
Bioscrypt Inc. which developed a version known as 3D FastPass.
Skin texture analysis
Another emerging trend uses the visual details of the skin, as captured in standard digital or scanned images. This technique, called skin texture analysis, turns the unique lines, patterns, and spots apparent in a person’s skin into a mathematical space.
Tests have shown that with the addition of skin texture analysis, performance in recognizing faces can increase 20 to 25 percent.
Software
§ Google's
Picasa digital image organizer has a built in
face recognition system starting from version 3.5 onwards. It can associate faces with persons, so that queries can be run on pictures to return all pictures with a specific group of people together. Picasaweb.com has also been providing a similar feature to its users.
§ Apple
iPhoto, photo organizer distributed with
iLife suite of applications includes a system by which people can tag recognized people on photos. Then they can be searched using
Spotlight.
§ Sony's
Picture Motion Browser (PMB) analyses photo, associates photos with identical faces so that they can be tagged accordingly, and differentiates between photos with one person, many persons and nobody.
§ Facebook also included face recognition technology
§ Windows Live Photo Gallery also included face recognition in last version.
Passage 2 房屋建筑
题目类型
|
Multiple Choices
|
参考答案
|
|
Passage 3 PLA 环保材料
题目类型
|
List of Heading
Summary
|
参考答案
|
|
来自internet相关背景文章
Dressed to dazzle
As high-tech materials invade high-street fashion, prepare for clothes that are cooler than silk and warmer than wool, keep insects at arm's length, and emit many pinpricks of coloured light.
The convergence of fashion and high technology is leading to new kinds of fibres, fabrics and coatings that are imbuing clothing with equally wondrous powers. Corpe Nove, an Italian fashion company, has made a prototype shirt that shortens its sleeves when room temperature rises and can be ironed with a hairdryer. And at Nexia Biotechnologies, a Canadian firm, scientists have caused a stir by manufacturing spider silk from the milk of genetically engineered goats. Not surprisingly, some industry analysts think high-tech materials may soon influence fashion more profoundly than any individual designer.
A big impact is already being made at the molecular level. Nano-Tex, a subsidiary of American textiles maker Burlington, markets a portfolio of nanotechnologies that can make fabrics more durable, comfortable, wrinkle-free and stain-resistant. The notion of this technology posing a threat to the future of the clothing industry clearly does not worry popular fashion outlets such as Gap, Levi Strauss and Lands' End, all of which employ Nano-Tex's products. Meanwhile, Schoeller Textil in Germany, whose clients include famous designers Donna Karan and Polo Ralph Lauren, uses nanotechnology to create fabrics that can store or release heat.
Sensory Perception Technologies (Spn embodies an entirely different application of nanotechnology. Created in 2003 by Quest International, a flavour and fragrance company, and Woolmark, a wool textile organisation, SPT is a new technique of embedding chemicals into fabric. Though not the first of this type, SPT's durability (evidently the microcapsule containing the chemicals can survive up to 30 washes) suggests an interesting future. Designers could incorporate signature scents into their collections. Sportswear could be impregnated with anti-perspirant. Hayfever sufferers might find relief by pulling on a T-shirt, and so on.
The loudest buzz now surrounds polylactic acid (PLA) fibres - and, in particular, one brand-named Ingeo. Developed by Cargill Dow, it is the first man-made fibre derived from a 100% annually renewable resource. This is currently maize (corn), though in theory any fermentable plant material, even potato peelings, can be used. In performance terms, the attraction for the 30-plus clothes makers signed up to use Ingeo lies in its superiority over polyester (which it was designed to replace).
As Philippa Watkins, a textiles specialist, notes, Ingeo is not a visual trend. Unlike nanotechnology, which promises to 'transform what clothes can do, Ingeo's impact on fashion will derive instead from its emphasis on using natural sustainable resources. Could wearing synthetic fabrics made from polluting and non-renewable fossil fuels become as uncool as slipping on a coat made from animal fur? Consumers should expect a much wider choice of 'green' fabrics. Alongside PLA fibres, firms are investigating plants such as bamboo, seaweed, nettles and banana stalks as raw materials for textiles. Soya bean fibre is also gaining ground. Harvested in China and spun in Europe, the fabric is a better absorber and ventilator than silk, and retains heat better than wool.
Elsewhere, fashion houses - among them Ermenegildo Zegna, Paul Smith and DKNY - are combining fashion with electronics. Clunky earlier attempts Involved attaching electronic components to the fabrics after the normal weaving process. But companies such as SOFTswitch have developed electro-conductive fabrics that behave in similar ways to conventional textiles.
Could electronic garments one day change colour or pattern? A hint of what could be achieved is offered by Luminex, a joint venture between Stabio Textile and Caen. Made of woven optical fibres and powered by a small battery, Luminex fabric emits thousands of pinpricks of light, the colour of which can be varied. Costumes made of the fabric wowed audiences at a production of the opera Aida in Washington, DC, last year.
Yet this ultimate of ambitions has remained elusive in daily fashion, largely because electronic textiles capable of such wizardry are still too fragile to wear. Margaret Orth, whose firm International Fashion Machines makes a colour-changing fabric, believes the capability is a decade or two away. Accessories with this chameleon-like capacity - for instance, a handbag that alters its colour - are more likely to appear first.